Logarithm Rules – Exercise 991

Exercise

16log18125=16^{\log_{\frac{1}{8}}125}=

Final Answer

16log18125=162516^{\log_{\frac{1}{8}}125}=\frac{1}{625}

Solution

Using Logarithm Rules we get:

16log18125=16^{\log_{\frac{1}{8}}125}=

=16log23125==16^{\log_{2^{-3}}125}=

=16log2353==16^{\log_{2^{-3}}5^3}=

=16log253log223==16^{\frac{\log_2 5^3}{\log_2 2^{-3}}}=

=16log2533==16^{\frac{\log_2 5^3}{-3}}=

=1613log253==16^{-\frac{1}{3}\log_2 5^3}=

=163(13)log25==16^{3\cdot (-\frac{1}{3})\log_2 5}=

=16log25==16^{-\log_2 5}=

=16log251==16^{\log_2 5^{-1}}=

=24log251==2^{4\log_2 5^{-1}}=

=2log254==2^{\log_2 5^{-4}}=

=54==5^{-4}=

=154==\frac{1}{5^{-4}}=

=1625==\frac{1}{625}=

Share with Friends

Leave a Reply