Calculating Limit of Series – A quotient of polynomials and trigonometric functions – Exercise 716

Exercise

Find the limit

limn2n4arccos(1n)+n2sin(n)7n4+3n2+5\lim _ { n \rightarrow \infty}\frac{2 n^4 \arccos {(\frac{1}{n})}+n^2\sin{(n)}}{7n^4+3n^2+5}

Final Answer


limn2n4arccos(1n)+n2sin(n)7n4+3n2+5=π7\lim _ { n \rightarrow \infty}\frac{2 n^4 \arccos {(\frac{1}{n})}+n^2\sin{(n)}}{7n^4+3n^2+5}=\frac{\pi}{7}

Solution

Coming soon…

Share with Friends

Leave a Reply