Indefinite Integral – A quotient of functions with roots – Exercise 6605 Post category:Indefinite Integral Post comments:0 Comments Exercise Evaluate the integral ∫x−7x+3+x+5dx\int \frac{x-7}{\sqrt{x+3}+\sqrt{x+5}} dx∫x+3+x+5x−7dx Final Answer Show final answer ∫x−7x+3+x+5dx=\int \frac{x-7}{\sqrt{x+3}+\sqrt{x+5}} dx=∫x+3+x+5x−7dx= =−15(x+3)52+103(x+3)32+15(x+5)52−4(x+5)32+c=-\frac{1}{5}{(x+3)}^{\frac{5}{2}}+\frac{10}{3}{(x+3)}^{\frac{3}{2}}+\frac{1}{5}{(x+5)}^{\frac{5}{2}}-4{(x+5)}^{\frac{3}{2}}+c=−51(x+3)25+310(x+3)23+51(x+5)25−4(x+5)23+c Solution Coming soon… Share with Friends Read more articles Previous PostIndefinite Integral – A rational function – Exercise 6398 You Might Also Like Indefinite Integral – A quotient of functions with ln function – Exercise 5403 May 17, 2019 Indefinite Integral – A rational function – Exercise 6398 July 8, 2019 Indefinite Integral – A rational function – Exercise 6393 July 8, 2019 Indefinite Integral – A quotient of exponential functions – Exercise 6387 July 7, 2019 Indefinite Integral – A multiplication of polynomials – Exercise 6382 July 7, 2019 Indefinite Integral – A polynomial to the power of a fraction – Exercise 6384 July 7, 2019 Leave a Reply Cancel replyCommentEnter your name or username to comment Enter your email address to comment Enter your website URL (optional) Δ