Calculating Limit of Function – A quotient of functions with a square root to minus infinity – Exercise 6566

Exercise

Evaluate the following limit:

limxxx21x\lim _ { x \rightarrow -\infty} \frac{x-\sqrt{x^2-1}}{x}

Final Answer


limxxx21x=2\lim _ { x \rightarrow -\infty} \frac{x-\sqrt{x^2-1}}{x}=2

Solution

First, we try to plug in x=x = -\infty and get

21\frac{-\infty-\sqrt{\infty^2-1}}{\infty}

We got the phrase \frac{\infty}{\infty} (=infinity divides by infinity). This is an indeterminate form, therefore we have to get out of this situation.

limxxx21x=\lim _ { x \rightarrow -\infty} \frac{x-\sqrt{x^2-1}}{x}=

=limxxx2(11x2)x==\lim _ { x \rightarrow -\infty} \frac{x-\sqrt{x^2(1-\frac{1}{x^2}})}{x}=

=limxxx211x2x==\lim _ { x \rightarrow -\infty} \frac{x-\sqrt{x^2}\sqrt{1-\frac{1}{x^2}}}{x}=

Since x aspires to minus infinity, it is negative. Therefore, the following holds:

x2=x\sqrt{x^2}=-x

We will plug it in and get

=limxx(x)11x2x==\lim _ { x \rightarrow -\infty} \frac{x-(-x)\sqrt{1-\frac{1}{x^2}}}{x}=

=limxx+x11x2x==\lim _ { x \rightarrow -\infty} \frac{x+x\sqrt{1-\frac{1}{x^2}}}{x}=

Divide numerator and denomerator by x:

=limx1+11x21==\lim _ { x \rightarrow -\infty} \frac{1+\sqrt{1-\frac{1}{x^2}}}{1}=

=limx1+11x2==\lim _ { x \rightarrow -\infty} 1+\sqrt{1-\frac{1}{x^2}}=

And since the following holds:

=limx1x2=0=\lim _ { x \rightarrow -\infty} \frac{1}{x^2}=0

Note: Any finite number divides by infinity is defined and equals to zero. For the full list press here

Again, we plug in x=x = -\infty and get

=1+10==1+\sqrt{1-0}=

=1+1==1+\sqrt{1}=

=2=2

Have a question? Found a mistake? – Write a comment below!
Was it helpful? You can buy me a cup of coffee here, which will make me very happy and will help me upload more solutions! 

Share with Friends

Leave a Reply