Exercise
Evaluate the following limit:
lim x → − ∞ x − x 2 − 1 x \lim _ { x \rightarrow -\infty} \frac{x-\sqrt{x^2-1}}{x} x → − ∞ lim x x − x 2 − 1
Final Answer
Show final answer
lim x → − ∞ x − x 2 − 1 x = 2 \lim _ { x \rightarrow -\infty} \frac{x-\sqrt{x^2-1}}{x}=2 x → − ∞ lim x x − x 2 − 1 = 2
Solution
First, we try to plug in x = − ∞ x = -\infty x = − ∞ and get
− ∞ − ∞ 2 − 1 ∞ \frac{-\infty-\sqrt{\infty^2-1}}{\infty} ∞ − ∞ − ∞ 2 − 1
We got the phrase ∞ ∞ \frac{\infty}{\infty} ∞ ∞ (=infinity divides by infinity). This is an indeterminate form , therefore we have to get out of this situation.
lim x → − ∞ x − x 2 − 1 x = \lim _ { x \rightarrow -\infty} \frac{x-\sqrt{x^2-1}}{x}= x → − ∞ lim x x − x 2 − 1 =
= lim x → − ∞ x − x 2 ( 1 − 1 x 2 ) x = =\lim _ { x \rightarrow -\infty} \frac{x-\sqrt{x^2(1-\frac{1}{x^2}})}{x}= = x → − ∞ lim x x − x 2 ( 1 − x 2 1 ) =
= lim x → − ∞ x − x 2 1 − 1 x 2 x = =\lim _ { x \rightarrow -\infty} \frac{x-\sqrt{x^2}\sqrt{1-\frac{1}{x^2}}}{x}= = x → − ∞ lim x x − x 2 1 − x 2 1 =
Since x aspires to minus infinity, it is negative. Therefore, the following holds:
x 2 = − x \sqrt{x^2}=-x x 2 = − x
We will plug it in and get
= lim x → − ∞ x − ( − x ) 1 − 1 x 2 x = =\lim _ { x \rightarrow -\infty} \frac{x-(-x)\sqrt{1-\frac{1}{x^2}}}{x}= = x → − ∞ lim x x − ( − x ) 1 − x 2 1 =
= lim x → − ∞ x + x 1 − 1 x 2 x = =\lim _ { x \rightarrow -\infty} \frac{x+x\sqrt{1-\frac{1}{x^2}}}{x}= = x → − ∞ lim x x + x 1 − x 2 1 =
Divide numerator and denomerator by x:
= lim x → − ∞ 1 + 1 − 1 x 2 1 = =\lim _ { x \rightarrow -\infty} \frac{1+\sqrt{1-\frac{1}{x^2}}}{1}= = x → − ∞ lim 1 1 + 1 − x 2 1 =
= lim x → − ∞ 1 + 1 − 1 x 2 = =\lim _ { x \rightarrow -\infty} 1+\sqrt{1-\frac{1}{x^2}}= = x → − ∞ lim 1 + 1 − x 2 1 =
And since the following holds:
= lim x → − ∞ 1 x 2 = 0 =\lim _ { x \rightarrow -\infty} \frac{1}{x^2}=0 = x → − ∞ lim x 2 1 = 0
Note: Any finite number divides by infinity is defined and equals to zero. For the full list press here
Again, we plug in x = − ∞ x = -\infty x = − ∞ and get
= 1 + 1 − 0 = =1+\sqrt{1-0}= = 1 + 1 − 0 =
= 1 + 1 = =1+\sqrt{1}= = 1 + 1 =
= 2 =2 = 2
Have a question? Found a mistake? – Write a comment below!
Was it helpful? You can buy me a cup of coffee here , which will make me very happy and will help me upload more solutions!