Calculating Limit of Function – A quotient of polynomials in the power of a polynomial to infinity – Exercise 6559

Exercise

Evaluate the following limit:

limx(3x2+8x6x25x+2)x\lim _ { x \rightarrow \infty} {(\frac{3x^2+8x-6}{x^2-5x+2})}^{-x}

Final Answer


limx(3x2+8x6x25x+2)x=0\lim _ { x \rightarrow \infty} {(\frac{3x^2+8x-6}{x^2-5x+2})}^{-x}=0

Solution

First, we try to plug in x=x = \infty and get

(32+8625+2){(\frac{3\infty^2+8\infty-6}{\infty^2-5\infty+2})}^{-\infty}

In the base we got the phrase \frac{\infty}{\infty} (=infinity divides by infinity). This is an indeterminate form, therefore we have to get out of this situation.

We have a quotient of polynomials tending to infinity. In such a case, we divide the numerator and denominator by the expression with the highest power, without its coefficient. In this case, we get

limx(3x2+8x6x25x+2)x=\lim _ { x \rightarrow \infty} {(\frac{3x^2+8x-6}{x^2-5x+2})}^{-x}=

=limx(3x2+8x6x2x25x+2x2)x==\lim _ { x \rightarrow \infty} {(\frac{\frac{3x^2+8x-6}{x^2}}{\frac{x^2-5x+2}{x^2}})}^{-x}=

=limx(3+8x6x215x+2x2)x==\lim _ { x \rightarrow \infty} {(\frac{3+\frac{8}{x}-\frac{6}{x^2}}{1-\frac{-5}{x}+\frac{2}{x^2}})}^{-x}=

We will plug in infinity again and get

=(3+0010+0)=={(\frac{3+0-0}{1-0+0})}^{-\infty}=

=3==3^{-\infty}=

=13==\frac{1}{3^{\infty}}=

=1==\frac{1}{\infty}=

=0=0

Note: Any positive finite number divides by infinity is defined and equals to zero. For the full list press here

Have a question? Found a mistake? – Write a comment below!
Was it helpful? You can buy me a cup of coffee here, which will make me very happy and will help me upload more solutions! 

Share with Friends

Leave a Reply