Exercise
Given the differentiable function
z=xf(xy)+g(xy)
Prove the equation
x2zxx′′+2xyzxy′′+y2zyy′′=0
Proof
Define
u=xy
We get the function
z=xf(u)+g(u)
And the internal function
u(x,y)=xy
We will use the chain rule to calculate the first and second order partial derivatives of z.
zx′=1⋅f+x⋅fu′⋅ux′+gu′⋅ux′=
=f+x⋅fu′⋅(−x2y)+gu′⋅(−x2y)=
=f−xy⋅fu′−x2y⋅gu′
zxx′′=fu′⋅ux′+fu′+x⋅fu′′⋅ux′+y⋅gu′′⋅ux′=
=fu′⋅ux′−(−x2y⋅fu′+xy⋅fu′′⋅ux′)−(−x2y⋅2x⋅gu′+x2y⋅gu′′⋅ux′)=
=−x2y⋅fu′+x2y⋅fu′+xy⋅x2y⋅fu′′+x42xy⋅gu′+x4y2⋅gu′′
=xy⋅x2y⋅fu′′+x42xy⋅gu′+x4y2⋅gu′′
zxy′′=fu′⋅uy′−(x1⋅fu′+xy⋅fu′′⋅uy′)−(x21⋅gu′+x2y⋅gu′′⋅uy′)=
=x1⋅fu′−x1⋅fu′−x2y⋅fu′′−x21⋅gu′−x3y⋅gu′′=
=−x2y⋅fu′′−x21⋅gu′−x3y⋅gu′′
zy′=x⋅fu′⋅uy′+gu′⋅uy′=
=x⋅fu′⋅x1+gu′⋅x1=
=fu′+x1⋅gu′
zyy′′=fu′′⋅uy′+x1⋅gu′′⋅uy′=
=x1⋅fu′′+x21⋅gu′′
We will put the partial derivatives in the left side of the equation we need to prove.
x2zxx′′+2xyzxy′′+y2zyy′′=
=x2(xy⋅x2y⋅fu′′+x42xy⋅gu′+x4y2⋅gu′′)+2xy(−x2y⋅fu′′−x21⋅gu′−x3y⋅gu′′)+y2(x1⋅fu′′+x21⋅gu′′)=
=xy2⋅fu′′+x2y⋅gu′+x2y2⋅gu′′−x2y2⋅fu′′−x2y⋅gu′−x22y2⋅gu′′+xy2⋅fu′′+x2y2⋅gu′′=
=0
We got zero as required.
Have a question? Found a mistake? – Write a comment below!
Was it helpful? You can buy me a cup of coffee here, which will make me very happy and will help me upload more solutions!