Exercise
Given the differentiable function
z=xf(x+y)+yg(x+y)
Prove the equation
zxx′′−2zxy′′+zyy′′=0
Proof
Define
u=x+y
We get the function
z=xf(u)+yg(u)
And the internal function
u(x,y)=x+y
We will use the chain rule to calculate the first and second order partial derivatives of z.
zx′=1⋅f+x⋅fx′+y⋅gx′=
=f+x⋅fu′⋅ux′+y⋅gu′⋅ux′=
=f+x⋅fu′⋅1+y⋅gu′⋅1=
=f+xfu′+ygu′=
zxx′′=fu′⋅ux′+fu′+x⋅fu′′⋅ux′+y⋅gu′′⋅ux′=
=fu′⋅1+fu′+x⋅fu′′⋅1+y⋅gu′′⋅1=
=fu′+fu′+xfu′′+y⋅gu′′
zxy′′=fu′⋅uy′+x⋅fu′′⋅uy′+gu′+y⋅gu′′⋅uy′=
=fu′⋅1+x⋅fu′′⋅1+gu′+y⋅gu′′⋅1=
=fu′+x⋅fu′′+gu′+y⋅gu′′
zy′=x⋅fu′⋅uy′+g+y⋅gu′⋅uy′=
=x⋅fu′⋅1+g+y⋅gu′⋅1=
=x⋅fu′+g+y⋅gu′
zyy′′=x⋅fu′′⋅uy′+gu′⋅uy′+gu′+y⋅gu′′⋅uy′=
=x⋅fu′′⋅1+gu′⋅1+gu′+y⋅gu′′⋅1=
=x⋅fu′′+gu′+gu′+y⋅gu′′
We will put the second order partial derivatives in the left side of the equation we need to prove.
zxx′′−2zxy′′+zyy′′=
=fu′+fu′+xfu′′+y⋅gu′′−2(fu′+x⋅fu′′+gu′+y⋅gu′′)+x⋅fu′′+gu′+gu′+y⋅gu′′=
=fu′+fu′+xfu′′+y⋅gu′′−2fu′−2x⋅fu′′−2gu′−2y⋅gu′′+x⋅fu′′+gu′+gu′+y⋅gu′′=
=0
We got zero as required.
Have a question? Found a mistake? – Write a comment below!
Was it helpful? You can buy me a cup of coffee here, which will make me very happy and will help me upload more solutions!