Multivariable Chain Rule – Proving an equation of partial derivatives – Exercise 6511

Exercise

Given the differentiable function (with parameter a)

y=f(xat)+g(x+at)y=f(x-at)+g(x+at)

Prove the equation

ytt=a2yxxy''_{tt}=a^2y''_{xx}

Proof

Define

u=xatu=x-at

v=x+atv=x+at

We get the function

y=f(u)+g(v)y=f(u)+g(v)

And the internal functions

u(x,t)=xatu(x,t)=x-at

v(y,t)=x+atv(y,t)=x+at

We will use the chain rule to calculate the first and second order partial derivatives of y.

yt=fuut+gvvt=y'_t=f'_u\cdot u'_t+g'_v\cdot v'_t=

=fu(a)+gva=f'_u\cdot (-a)+g'_v\cdot a

=afu+agv=-af'_u+ag'_v

 

ytt=afuut+agvvt=y''_{tt}=-a\cdot f''_u\cdot u'_t+ag''_v\cdot v'_t=

=afu(a)+agva==-af''_u\cdot (-a)+ag''_v\cdot a=

=a2fu+a2gv=a^2f''_u+a^2g''_v

 

yx=fuux+gvvx=y'_x=f'_u\cdot u'_x+g'_v\cdot v'_x=

=fu1+gv1==f'_u\cdot 1+g'_v\cdot 1=

=fu+gv=f'_u+g'_v

 

yxx=fuux+gvvxy''_{xx}=f''_u\cdot u'_x+g''_v\cdot v'_x

fu1+gv1=f''_u\cdot 1+g''_v\cdot 1=

=fu+gv=f''_u+g''_v

We will put the second order partial derivatives in the left side of the equation we need to prove.

ytt=a2fu+a2gv=y''_{tt}=a^2f''_u+a^2g''_v=

=a2(fu+gv)==a^2(f''_u+g''_v)=

=a2yxx=a^2y''_{xx}

We got to the right side of the equation as required.

Have a question? Found a mistake? – Write a comment below!
Was it helpful? You can buy me a cup of coffee here, which will make me very happy and will help me upload more solutions! 

Share with Friends

Leave a Reply