Multivariable Chain Rule – Proving an equation of partial derivatives – Exercise 6467

Exercise

Given the differentiable function

z(x,y)=ln(ex+ey)z(x,y)=\ln(e^x+e^y)

Prove the equation

zxxzyy=(zxy)2z''_{xx}\cdot z''_{yy}={(z''_{xy})}^2

Proof

We will use the chain rule to calculate the partial derivatives of z.

zx=1ex+eyex=z'_x=\frac{1}{e^x+e^y}\cdot e^x=

=exex+ey=\frac{e^x}{e^x+e^y}

zy=1ex+eyey=z'_y=\frac{1}{e^x+e^y}\cdot e^y=

=eyex+ey=\frac{e^y}{e^x+e^y}

We will calculate the second order derivatives.

zxx=ex(ex+ey)exex(ex+ey)2=z''_{xx}=\frac{e^x(e^x+e^y)-e^x\cdot e^x}{{(e^x+e^y)}^2}=

=exey(ex+ey)2=\frac{e^x\cdot e^y}{{(e^x+e^y)}^2}

zyy=ey(ex+ey)eyey(ex+ey)2=z''_{yy}=\frac{e^y(e^x+e^y)-e^y\cdot e^y}{{(e^x+e^y)}^2}=

=eyex(ex+ey)2=\frac{e^y\cdot e^x}{{(e^x+e^y)}^2}

zxy=exey(ex+ey)2z''_{xy}=\frac{-e^x\cdot e^y}{{(e^x+e^y)}^2}

We will put the partial derivatives in the left side of the equation we need to prove.

zxxzyy=z''_{xx}\cdot z''_{yy}=

=exey(ex+ey)2eyex(ex+ey)2==\frac{e^x\cdot e^y}{{(e^x+e^y)}^2}\cdot \frac{e^y\cdot e^x}{{(e^x+e^y)}^2}=

=e2xe2y(ex+ey)4==\frac{e^{2x}\cdot e^{2y}}{{(e^x+e^y)}^4}=

=(exey(ex+ey)2)2=={(\frac{e^{x}\cdot e^{y}}{{(e^x+e^y)}^2})}^2=

=(zxy)2={(z''_{xy})}^2

We got to the right side as required.

Have a question? Found a mistake? – Write a comment below!
Was it helpful? You can buy me a cup of coffee here, which will make me very happy and will help me upload more solutions! 

Share with Friends

Leave a Reply