Multivariable Chain Rule – Proving an equation of partial derivatives – Exercise 6465

Exercise

Given the differentiable function

z(x,y)=ln1x2+y2z(x,y)=\ln\frac{1}{\sqrt{x^2+y^2}}

Prove the equation

zxx+zyy=0z''_{xx}+z''_{yy}=0

Proof

We will use the chain rule to calculate the partial derivatives of z.

zx=11x2+y21(x2+y2)212x2+y2(2x)=z'_x=\frac{1}{\frac{1}{\sqrt{x^2+y^2}}}\cdot\frac{-1}{{(\sqrt{x^2+y^2})}^2}\cdot\frac{1}{2\sqrt{x^2+y^2}}\cdot (2x)=

=x2+y2xx2+y21x2+y2==\sqrt{x^2+y^2}\cdot\frac{-x}{x^2+y^2}\cdot\frac{1}{\sqrt{x^2+y^2}}=

=xx2+y2=\frac{-x}{x^2+y^2}

zy=11x2+y21(x2+y2)212x2+y2(2y)=z'_y=\frac{1}{\frac{1}{\sqrt{x^2+y^2}}}\cdot\frac{-1}{{(\sqrt{x^2+y^2})}^2}\cdot\frac{1}{2\sqrt{x^2+y^2}}\cdot (2y)=

=x2+y2yx2+y21x2+y2==\sqrt{x^2+y^2}\cdot\frac{-y}{x^2+y^2}\cdot\frac{1}{\sqrt{x^2+y^2}}=

=yx2+y2=\frac{-y}{x^2+y^2}

We will calculate the second order derivatives.

zxx=(x2+y2)+x2x(x2+y2)2=z''_{xx}=\frac{-(x^2+y^2)+x\cdot 2x}{{(x^2+y^2)}^2}=

=x2y2(x2+y2)2=\frac{x^2-y^2}{{(x^2+y^2)}^2}

zyy=(x2+y2)+y2y(x2+y2)2=z''_{yy}=\frac{-(x^2+y^2)+y\cdot 2y}{{(x^2+y^2)}^2}=

=y2x2(x2+y2)2=\frac{y^2-x^2}{{(x^2+y^2)}^2}

We will put the partial derivatives in the left side of the equation we need to prove.

zxx+zyy=z''_{xx}+z''_{yy}=

=x2y2(x2+y2)2+y2x2(x2+y2)2==\frac{x^2-y^2}{{(x^2+y^2)}^2}+\frac{y^2-x^2}{{(x^2+y^2)}^2}=

=x2y2+y2x2(x2+y2)2==\frac{x^2-y^2+y^2-x^2}{{(x^2+y^2)}^2}=

=0(x2+y2)2==\frac{0}{{(x^2+y^2)}^2}=

=0=0

We got zero as required.

Have a question? Found a mistake? – Write a comment below!
Was it helpful? You can buy me a cup of coffee here, which will make me very happy and will help me upload more solutions! 

Share with Friends

Leave a Reply