Exercise
Evaluate the following limit:
lim x → ∞ ( 2 x − 3 2 x + 4 ) x − 1 4 \lim _ { x \rightarrow \infty} {(\frac{2x-3}{2x+4})}^{\frac{x-1}{4}} x → ∞ lim ( 2 x + 4 2 x − 3 ) 4 x − 1
Final Answer
Show final answer
lim x → ∞ ( 2 x − 3 2 x + 4 ) x − 1 4 = e − 7 8 \lim _ { x \rightarrow \infty} {(\frac{2x-3}{2x+4})}^{\frac{x-1}{4}}=e^{-\frac{7}{8}} x → ∞ lim ( 2 x + 4 2 x − 3 ) 4 x − 1 = e − 8 7
Solution
First, we try to plug in x = ∞ x = \infty x = ∞
( 2 ∞ − 3 2 ∞ + 4 ) ∞ − 1 4 {(\frac{2\infty-3}{2\infty+4})}^{\frac{\infty-1}{4}} ( 2 ∞ + 4 2 ∞ − 3 ) 4 ∞ − 1
In the base we got the phrase ∞ ∞ \frac{\infty}{\infty} ∞ ∞ (=infinity divides by infinity). This is an indeterminate form , therefore we have to get out of this situation.
We simplify the expression in order to use the known limit also called Euler’s Limit .
lim x → ∞ ( 2 x − 3 2 x + 4 ) x − 1 4 = \lim _ { x \rightarrow \infty} {(\frac{2x-3}{2x+4})}^{\frac{x-1}{4}}= x → ∞ lim ( 2 x + 4 2 x − 3 ) 4 x − 1 =
= lim x → ∞ ( 2 x + 4 − 7 2 x + 4 ) x − 1 4 = =\lim _ { x \rightarrow \infty} {(\frac{2x+4-7}{2x+4})}^{\frac{x-1}{4}}= = x → ∞ lim ( 2 x + 4 2 x + 4 − 7 ) 4 x − 1 =
= lim x → ∞ ( 1 + − 7 2 x + 4 ) x − 1 4 = =\lim _ { x \rightarrow \infty} {(1+\frac{-7}{2x+4})}^{\frac{x-1}{4}}= = x → ∞ lim ( 1 + 2 x + 4 − 7 ) 4 x − 1 =
At the base, we have an expression of the form:
1 + − 7 2 x + 4 1+\frac{-7}{2x+4} 1 + 2 x + 4 − 7
And the following holds:
lim x → ∞ − 7 2 x + 4 = 0 \lim _ { x \rightarrow \infty} \frac{-7}{2x+4}= 0 x → ∞ lim 2 x + 4 − 7 = 0
As required.
Therefore, we will multiply the power by the inverted expression and get
= lim x → ∞ ( 1 + − 7 2 x + 4 ) 2 x + 4 − 7 ⋅ − 7 2 x + 4 ⋅ x − 1 4 = =\lim _ { x \rightarrow \infty} {(1+\frac{-7}{2x+4})}^{\frac{2x+4}{-7}\cdot\frac{-7}{2x+4}\cdot\frac{x-1}{4}}= = x → ∞ lim ( 1 + 2 x + 4 − 7 ) − 7 2 x + 4 ⋅ 2 x + 4 − 7 ⋅ 4 x − 1 =
Note: When adding an expression by multiplication, its inverted expression must also be multiplied so that the original expression does not change.
Now, according to Euler’s Limit , we get
= lim x → ∞ ( 1 + − 7 2 x + 4 ) 2 x + 4 − 7 = e =\lim _ { x \rightarrow \infty} {(1+\frac{-7}{2x+4})}^{\frac{2x+4}{-7}}=e = x → ∞ lim ( 1 + 2 x + 4 − 7 ) − 7 2 x + 4 = e
All we have left to do is to calculate the limit on the expression that remains in the power:
lim x → ∞ − 7 2 x + 4 ⋅ x − 1 4 = \lim _ { x \rightarrow \infty}\frac{-7}{2x+4}\cdot\frac{x-1}{4}= x → ∞ lim 2 x + 4 − 7 ⋅ 4 x − 1 =
= lim x → ∞ − 7 ( x − 1 ) 4 ( 2 x + 4 ) = =\lim _ { x \rightarrow \infty}\frac{-7(x-1)}{4(2x+4)}= = x → ∞ lim 4 ( 2 x + 4 ) − 7 ( x − 1 ) =
= lim x → ∞ − 7 x + 7 8 x + 16 = =\lim _ { x \rightarrow \infty}\frac{-7x+7}{8x+16}= = x → ∞ lim 8 x + 1 6 − 7 x + 7 =
We received a quotient of polynomials tending to infinity. In such a situation, we divide the numerator and denominator by the expression with highest power, without its coefficient. We will get
= lim x → ∞ − 7 x + 7 x 8 x + 16 x = =\lim _ { x \rightarrow \infty}\frac{\frac{-7x+7}{x}}{\frac{8x+16}{x}}= = x → ∞ lim x 8 x + 1 6 x − 7 x + 7 =
= lim x → ∞ − 7 + 7 x 8 + 16 x = =\lim _ { x \rightarrow \infty}\frac{-7+\frac{7}{x}}{8+\frac{16}{x}}= = x → ∞ lim 8 + x 1 6 − 7 + x 7 =
We plug in infinity and get
= − 7 + 7 ∞ 8 + 16 ∞ = =\frac{-7+\frac{7}{\infty}}{8+\frac{16}{\infty}}= = 8 + ∞ 1 6 − 7 + ∞ 7 =
= − 7 + 0 8 + 0 = =\frac{-7+0}{8+0}= = 8 + 0 − 7 + 0 =
= − 7 8 =\frac{-7}{8} = 8 − 7
Therefore, in total we get
= lim x → ∞ ( 1 + − 7 2 x + 4 ) 2 x + 4 − 7 ⋅ − 7 2 x + 4 ⋅ x − 1 4 = =\lim _ { x \rightarrow \infty} {(1+\frac{-7}{2x+4})}^{\frac{2x+4}{-7}\cdot\frac{-7}{2x+4}\cdot\frac{x-1}{4}}= = x → ∞ lim ( 1 + 2 x + 4 − 7 ) − 7 2 x + 4 ⋅ 2 x + 4 − 7 ⋅ 4 x − 1 =
= e − 7 8 =e^{-\frac{7}{8}} = e − 8 7
Have a question? Found a mistake? – Write a comment below!
Was it helpful? You can buy me a cup of coffee here , which will make me very happy and will help me upload more solutions!