Powers and Roots – Simplify an expression with roots – Exercise 5682

Exercise

Simplify the expression:

533+23\frac{5}{\sqrt[3]{3}+\sqrt[3]{2}}

Final Answer


9363+43\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}

Solution

Using Powers and Roots rules we get:

533+23=\frac{5}{\sqrt[3]{3}+\sqrt[3]{2}}=

We get rid of the roots in the denominator:

=5(323313213+223)(33+23)(323313213+223)==\frac{5(3^{\frac{2}{3}}-3^{\frac{1}{3}}\cdot 2^{\frac{1}{3}}+2^{\frac{2}{3}})}{(\sqrt[3]{3}+\sqrt[3]{2})(3^{\frac{2}{3}}-3^{\frac{1}{3}}\cdot 2^{\frac{1}{3}}+2^{\frac{2}{3}})}=

=5(323313213+223)3+2==\frac{5(3^{\frac{2}{3}}-3^{\frac{1}{3}}\cdot 2^{\frac{1}{3}}+2^{\frac{2}{3}})}{3+2}=

=323313213+223==3^{\frac{2}{3}}-3^{\frac{1}{3}}\cdot 2^{\frac{1}{3}}+2^{\frac{2}{3}}=

One can further simplify the result:

=9363+43=\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}

Share with Friends

Leave a Reply