Logarithm Rules – Exercise 5579 Post category:Logarithms Post comments:0 Comments Exercise Solve the equation: x=2log63+log68−log62x=2\log_6 3+\log_6 8-\log_6 2x=2log63+log68−log62 Final Answer Show final answer x=2x=2x=2 Solution Using Logarithm Rules we get: x=2log63+log68−log62x=2\log_6 3+\log_6 8-\log_6 2x=2log63+log68−log62 x=log632+log682x=\log_6 3^2+\log_6 \frac{8}{2}x=log632+log628 x=log69+log64x=\log_6 9+\log_6 4x=log69+log64 x=log6(9⋅4)x=\log_6 (9\cdot 4)x=log6(9⋅4) x=log636x=\log_6 36x=log636 6x=366^x=366x=36 x=2x=2x=2 Share with Friends Read more articles Previous PostLogarithm Rules – Exercise 5574 You Might Also Like Logarithm Rules – Exercise 5574 June 24, 2019 Logarithm Rules – Exercise 941 December 3, 2018 Logarithm Rules – Exercise 987 December 8, 2018 Logarithm Rules – Exercise 991 December 8, 2018 Leave a Reply Cancel replyCommentEnter your name or username to comment Enter your email address to comment Enter your website URL (optional) Δ