Spherical and Cylindrical Coordinates – On an ellipse – Exercise 4620

Exercise

Calculate the integral

T(x2a2+y2b2+z2c2)dxdydz\int\int\int_T (\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}) dxdydz

Where T is bounded by the surfaces

x2a2+y2b2+z2c2=1\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1

Final Answer


T(x2a2+y2b2+z2c2)dxdydz=45abcπ\int\int\int_T (\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}) dxdydz=\frac{4}{5}abc\pi

Solution

Coming soon…

Share with Friends

Leave a Reply