Calculating Triple Integrals – Fixed integration limits – Exercise 4556

Exercise

Calculate the integral

Tz2ex+ydxdydz\int\int\int_T z^2 e^{x+y} dxdydz

Where T is bounded by the surfaces

x=0,x=1,y=0,y=1,z=0,z=1x=0,x=1,y=0,y=1,z=0,z=1

Final Answer


Tz2ex+ydxdydz=13(e1)2\int\int\int_T z^2 e^{x+y} dxdydz=\frac{1}{3}{(e-1)}^2

Solution

Coming soon…

Share with Friends

Leave a Reply