Polar Coordinates – Finding integration limits in polar coordinates – Exercise 3997 Post category:Polar Coordinates Post comments:0 Comments Exercise Given the double integral ∫∫Df(x,y)dxdy\int\int_D f(x,y) dxdy∫∫Df(x,y)dxdy Calculate the integration limits in polar coordinates where D is the domain {(x,y)∣1≤x≤2,x≤y≤3x}\{(x,y)|1\leq x\leq 2,x\leq y\leq\sqrt{3}x\}{(x,y)∣1≤x≤2,x≤y≤3x} Final Answer Show final answer ∫π4π3dθ∫1cosθ2cosθf(rcosθ,rsinθ)⋅rdr\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}d\theta\int_{\frac{1}{\cos\theta}}^{\frac{2}{\cos\theta}} f(r\cos\theta,r\sin\theta)\cdot r dr∫4π3πdθ∫cosθ1cosθ2f(rcosθ,rsinθ)⋅rdr Solution Coming soon… Share with Friends Read more articles Previous PostPolar Coordinates – Finding integration limits in polar coordinates – Exercise 4002 Next PostPolar Coordinates – Finding integration limits in polar coordinates – Exercise 3994 You Might Also Like Polar Coordinates – Fixed integration limits – Exercise 3976 March 10, 2019 Polar Coordinates – Finding integration limits in polar coordinates – Exercise 3980 March 10, 2019 Polar Coordinates – Finding integration limits in polar coordinates – Exercise 3986 March 10, 2019 Polar Coordinates – Finding integration limits in polar coordinates – Exercise 3992 March 10, 2019 Polar Coordinates – Finding integration limits in polar coordinates – Exercise 3994 March 10, 2019 Polar Coordinates – Finding integration limits in polar coordinates – Exercise 4002 March 10, 2019 Leave a Reply Cancel replyCommentEnter your name or username to comment Enter your email address to comment Enter your website URL (optional) Δ