Polar Coordinates – Finding integration limits in polar coordinates – Exercise 3994

Exercise

Given the double integral

Df(x,y)dxdy\int\int_D f(x,y) dxdy

Calculate the integration limits in polar coordinates where D is the domain

{(x,y)0x1,0y1x}\{(x,y)|0\leq x\leq 1,0\leq y\leq1-x\}

Final Answer

0π2dθ01sinθ+cosθf(rcosθ,rsinθ)rdr\int_0^{\frac{\pi}{2}}d\theta\int_0^{\frac{1}{\sin\theta+\cos\theta}} f(r\cos\theta,r\sin\theta)\cdot r dr

Solution

Coming soon…

Share with Friends

Leave a Reply