Polar Coordinates – Finding integration limits in polar coordinates – Exercise 3992 Post category:Polar Coordinates Post comments:0 Comments Exercise Given the double integral ∫∫Df(x,y)dxdy\int\int_D f(x,y) dxdy∫∫Df(x,y)dxdy Calculate the integration limits in polar coordinates where D is the domain a2≤x2+y2≤b2,0<a<ba^2\leq x^2+y^2\leq b^2, 0<a<ba2≤x2+y2≤b2,0<a<b Final Answer Show final answer ∫02πdθ∫abf(rcosθ,rsinθ)⋅rdr\int_0^{2\pi}d\theta\int_a^b f(r\cos\theta,r\sin\theta)\cdot r dr∫02πdθ∫abf(rcosθ,rsinθ)⋅rdr Solution Coming soon… Share with Friends Read more articles Previous PostPolar Coordinates – Finding integration limits in polar coordinates – Exercise 3994 Next PostPolar Coordinates – Finding integration limits in polar coordinates – Exercise 3986 You Might Also Like Polar Coordinates – Fixed integration limits – Exercise 3976 March 10, 2019 Polar Coordinates – Finding integration limits in polar coordinates – Exercise 3980 March 10, 2019 Polar Coordinates – Finding integration limits in polar coordinates – Exercise 3986 March 10, 2019 Polar Coordinates – Finding integration limits in polar coordinates – Exercise 3994 March 10, 2019 Polar Coordinates – Finding integration limits in polar coordinates – Exercise 3997 March 10, 2019 Polar Coordinates – Finding integration limits in polar coordinates – Exercise 4002 March 10, 2019 Leave a Reply Cancel replyCommentEnter your name or username to comment Enter your email address to comment Enter your website URL (optional) Δ