Vector uses in physics – Calculate velocity and acceleration – Exercise 3866

Exercise

Given a vector radius of a point as a function of time

r(t)=v0t12gt2k\vec{r}(t)=\vec{v_0}t-\frac{1}{2}gt^2\vec{k}

Where the initial velocity is

v0=v(0)=(v01,v02,v03)\vec{v_0}=\vec{v}(0)=(v_{01},v_{02},v_{03})

Calculate the velocity function, the acceleration function and their values (size).

Final Answer

v(t)=(v01,v02,v03gt)\vec{v}(t)=(v_{01},v_{02},v_{03}-gt)

v(t)=v012,v022,(v03gt)2|\vec{v}(t)|=\sqrt{v^2_{01},v^2_{02},{(v_{03}-gt)}^2}

a(t)=gk\vec{a}(t)=-g\vec{k}

a(t)=g|\vec{a}(t)|=g

Solution

Coming soon…

Share with Friends

Leave a Reply