Vector uses in physics – Calculate velocity and acceleration – Exercise 3852

Exercise

A particle moves according to the law of motion

r(t)=Rcos(ωt)i+Rsin(ωt)j\vec{r}(t)=R\cos(\omega t)\vec{i}+R\sin(\omega t)\vec{j}

Where

ω>0,R>0\omega>0, R>0

Calculate the velocity function, the acceleration function, their values (vector sizes) and unit vectors.

Final Answer

v(t)=Rωsin(ωt)i+Rωcos(ωt)j\vec{v}(t)=-R\omega\sin(\omega t)\vec{i}+R\omega\cos(\omega t)\vec{j}

v(t)=Rω|\vec{v}(t)|=R\omega

v^(t)=sin(ωt)i+cos(ωt)j\hat{v}(t)=-\sin(\omega t)\vec{i}+\cos(\omega t)\vec{j}

a(t)=Rω2cos(ωt)iRω2sin(ωt)j\vec{a}(t)=-R\omega^2\cos(\omega t)\vec{i}-R\omega^2\sin(\omega t)\vec{j}

a(t)=Rω2|\vec{a}(t)|=R\omega^2

a^(t)=cos(ωt)isin(ωt)j\hat{a}(t)=-\cos(\omega t)\vec{i}-\sin(\omega t)\vec{j}

Solution

Coming soon…

Share with Friends

Leave a Reply