Exercise
A particle moves according to the law of motion
\vec{r}(t)=\cos(\alpha)\cos(\omega t)\vec{i}+\sin(\alpha)\cos(\omega t)\vec{j}+\sin(\omega t)\vec{k}
Where
\omega>0
Calculate their velocity, acceleration and their values (vector sizes).
Final Answer
\vec{v}(t)=\omega\cos(\alpha)\sin(\omega t)\vec{i}-\omega\sin(\alpha)\sin(\omega t)\vec{j}+\omega\cos(\omega t)\vec{k}
|\vec{v}(t)|=\omega
\vec{a}(t)=-\omega^2\cos(\alpha)\cos(\omega t)\vec{i}-\omega^2\sin(\alpha)\cos(\omega t)\vec{j}-\omega^2\sin(\omega t)\vec{k}
|\vec{a}(t)|=\omega^2
Solution
Coming soon…