Global Extremum – Domain of a curve with absolute value – Exercise 3471

Exercise

Find the maximum value and the minimum value of the function

z(x,y)=x2xy+y2z(x,y)=x^2-xy+y^2

In the domain

D={(x,y):x+y1}D=\{ (x,y): |x|+|y|\leq 1\}

Final Answer

maxDz(0,±1)=maxDz(±1,0)=1\max_D z(0,\pm 1)=\max_D z(\pm 1,0) =1

minDz(0,0)=0\min_D z(0,0) =0

Solution

Coming soon…

Share with Friends

Leave a Reply