Multivariable Chain Rule – Proving an equation of partial derivatives – Exercise 3384

Exercise

Given the differentiable function

u(x,y,z)=f(xy,yz,zx)u(x,y,z)=f(x-y, y-z, z-x)

Prove the equation

ux+uy+uz=0u'_x+u'_y+u'_z=0

Proof

When we have a function and in its parentheses there is a complex expression instead of a simple variable, we will define a new variable like this

v=xyv=x-y

w=yzw=y-z

t=zxt=z-x

We get the function

u(x,y,z)=f(v,w,t)u(x,y,z)=f(v,w,t)

Now we will use the chain rule to calculate the partial derivatives of u.

ux=fvvx+fwwx+fttxu'_x=f'_v\cdot v'_x+f'_w\cdot w'_x+f'_t\cdot t'_x

uy=fvvy+fwwy+fttyu'_y=f'_v\cdot v'_y+f'_w\cdot w'_y+f'_t\cdot t'_y

uz=fvvz+fwwz+fttzu'_z=f'_v\cdot v'_z+f'_w\cdot w'_z+f'_t\cdot t'_z

We calculate  the partial derivatives of v,w and t.

vx=1v'_x=1

vy=1v'_y=-1

vz=0v'_z=0

wx=0w'_x=0

wy=1w'_y=1

wz=1w'_z=-1

tx=1t'_x=-1

ty=0t'_y=0

tz=1t'_z=1

We put the results in the partial derivatives of u and get

ux=fvvx+fwwx+fttx=u'_x=f'_v\cdot v'_x+f'_w\cdot w'_x+f'_t\cdot t'_x=

=fv1+fw0+ft(1)==f'_v\cdot 1+f'_w\cdot 0+f'_t\cdot (-1)=

=fvft=f'_v-f'_t

uy=fv1+fwwy+ftty=u'_y=f'_v\cdot -1+f'_w\cdot w'_y+f'_t\cdot t'_y=

=fv(1)+fw1+ft0==f'_v\cdot (-1)+f'_w\cdot 1+f'_t\cdot 0=

=fv+fw=-f'_v+f'_w

uz=fvvz+fwwz+fttz=u'_z=f'_v\cdot v'_z+f'_w\cdot w'_z+f'_t\cdot t'_z=

=fv0+fw(1)+ft1==f'_v\cdot 0+f'_w\cdot (-1)+f'_t\cdot 1=

=fw+ft=-f'_w+f'_t

We will put the partial derivatives in the left side of the equation we need to prove.

ux+uy+uz=u'_x+u'_y+u'_z=

=(fvft)+(fv+fw)+(fw+ft)==(f'_v-f'_t)+(-f'_v+f'_w)+(-f'_w+f'_t)=

=fvftfv+fwfw+ft=0=f'_v-f'_t-f'_v+f'_w-f'_w+f'_t=0

Hence, we got

ux+uy+uz=0u'_x+u'_y+u'_z=0

As required.

Have a question? Found a mistake? – Write a comment below!
Was it helpful? You can buy me a cup of coffee here, which will make me very happy and will help me upload more solutions! 

Share with Friends

Leave a Reply