Multivariable Chain Rule – Exercise 3329

Exercise

Given

z(t,x,y)=tan(3t+2x2y)z(t,x,y)=\tan (3t+2x^2-y)

f(t)=1tf(t)=\frac{1}{t}

v(t)=tv(t)=\sqrt{t}

Z(t)=z(t,f(t),v(t))Z(t)=z(t,f(t),v(t))

Calculate the derivative

Z(t)Z'(t)

Final Answer

Z'(t)=\frac{3+\frac{-4}{t^3}-\frac{1}{2\sqrt{t}}}{\cos^2(3t+\frac{2}{t^2}-\sqrt{t})}

Solution

We will use the chain rule to calculate the derivative

Z(t)=zt+zfft+zvvtZ'(t)=z'_t+z'_f\cdot f'_t+z'_v\cdot v'_t

We have

Z(t)=z(t,f,v)Z(t)=z(t,f,v)

And function z is

z(t,x,y)=tan(3t+2x2y)z(t,x,y)=\tan (3t+2x^2-y)

Hence, we get

z(t,f,v)=tan(3t+2f2v)z(t,f,v)=\tan (3t+2f^2-v)

We calculate the partial derivatives of z.

zt=1cos2(3t+2f2v)3=z'_t=\frac{1}{\cos^2(3t+2f^2-v)}\cdot 3=

=3cos2(3t+2f2v)=\frac{3}{\cos^2(3t+2f^2-v)}

zf=1cos2(3t+2f2v)4f=z'_f=\frac{1}{\cos^2(3t+2f^2-v)}\cdot 4f=

=4fcos2(3t+2f2v)=\frac{4f}{\cos^2(3t+2f^2-v)}

zv=1cos2(3t+2f2v)(1)=z'_v=\frac{1}{\cos^2(3t+2f^2-v)}\cdot (-1)=

=1cos2(3t+2f2v)=\frac{-1}{\cos^2(3t+2f^2-v)}

And the partial derivatives of f and v.

ft=1t2f'_t=\frac{-1}{t^2}

vt=12tv'_t=\frac{1}{2\sqrt{t}}

We put the derivatives and get

Z(t)=zt+zfft+zvvt=Z'(t)=z'_t+z'_f\cdot f'_t+z'_v\cdot v'_t=

=3cos2(3t+2f2v)+4fcos2(3t+2f2v)1t2+1cos2(3t+2f2v)12t==\frac{3}{\cos^2(3t+2f^2-v)}+\frac{4f}{\cos^2(3t+2f^2-v)}\cdot \frac{-1}{t^2}+\frac{-1}{\cos^2(3t+2f^2-v)}\cdot \frac{1}{2\sqrt{t}}=

=3cos2(3t+2(1t)2t)+41tcos2(3t+2(1t)2t)1t2+1cos2(3t+2(1t)2t)12t==\frac{3}{\cos^2(3t+2{(\frac{1}{t})}^2-\sqrt{t})}+\frac{4\frac{1}{t}}{\cos^2(3t+2{(\frac{1}{t})}^2-\sqrt{t})}\cdot \frac{-1}{t^2}+\frac{-1}{\cos^2(3t+2{(\frac{1}{t})}^2-\sqrt{t})}\cdot \frac{1}{2\sqrt{t}}=

=1cos2(3t+2t2t)(3+4t1t212t)==\frac{1}{\cos^2(3t+\frac{2}{t^2}-\sqrt{t})}(3+\frac{4}{t}\cdot \frac{-1}{t^2}-\frac{1}{2\sqrt{t}})=

=1cos2(3t+2t2t)(3+4t312t)==\frac{1}{\cos^2(3t+\frac{2}{t^2}-\sqrt{t})}(3+\frac{-4}{t^3}-\frac{1}{2\sqrt{t}})=

=3+4t312tcos2(3t+2t2t)=\frac{3+\frac{-4}{t^3}-\frac{1}{2\sqrt{t}}}{\cos^2(3t+\frac{2}{t^2}-\sqrt{t})}

Have a question? Found a mistake? – Write a comment below!
Was it helpful? You can buy me a cup of coffee here, which will make me very happy and will help me upload more solutions! 

Share with Friends

Leave a Reply