Indefinite Integral – A quotient of functions with cos and sin – Exercise 2250 Post category:Indefinite Integral Post comments:0 Comments Exercise Evaluate the integral ∫cos7xsinxdx\int \frac{\cos^7 x}{\sqrt{\sin x}} dx∫sinxcos7xdx Final Answer Show final answer ∫cos7xsinxdx=2sinx(1−35sin2x+13sin4x−113sin6x)+c\int \frac{\cos^7 x}{\sqrt{\sin x}} dx =2\sqrt{\sin x}(1-\frac{3}{5}\sin^2 x+\frac{1}{3}\sin^4 x-\frac{1}{13}\sin^6 x)+c∫sinxcos7xdx=2sinx(1−53sin2x+31sin4x−131sin6x)+c Solution Coming soon… Share with Friends Read more articles Previous PostIndefinite Integral – Irreducible polynomial in denominator – Exercise 1965 Next PostIndefinite Integral – tan(x) – Exercise 1924 You Might Also Like Indefinite Integral – A multiplication of polynomials – Exercise 6382 July 7, 2019 Indefinite Integral – A polynomial to the power of a fraction – Exercise 6384 July 7, 2019 Indefinite Integral – A quotient of functions with roots – Exercise 6605 July 16, 2019 Indefinite Integral – A quotient of functions with ln function – Exercise 5403 May 17, 2019 Indefinite Integral – A rational function – Exercise 6398 July 8, 2019 Indefinite Integral – A rational function – Exercise 6393 July 8, 2019 Leave a Reply Cancel replyCommentEnter your name or username to comment Enter your email address to comment Enter your website URL (optional) Δ