Powers and Roots – Simplify an expression with powers – Exercise 1660

Exercise

Simplify the expression:

(a2a3)nan+7(b4)n+3((a2)n+1bn+1)3bn+8\frac{{(a^2 a^3)}^n\cdot a^{n+7}\cdot {(b^4)}^{n+3}}{{{({(a^2)}^{n+1}\cdot b^{n+1}})}^3\cdot b^{n+8}}

Final Answer

(a2a3)nan+7(b4)n+3((a2)n+1bn+1)3bn+8=ab\frac{{(a^2 a^3)}^n\cdot a^{n+7}\cdot {(b^4)}^{n+3}}{{{({(a^2)}^{n+1}\cdot b^{n+1}})}^3\cdot b^{n+8}}=ab

Solution

Using Powers and Roots rules we get:

(a2a3)nan+7(b4)n+3((a2)n+1bn+1)3bn+8=\frac{{(a^2 a^3)}^n\cdot a^{n+7}\cdot {(b^4)}^{n+3}}{{{({(a^2)}^{n+1}\cdot b^{n+1}})}^3\cdot b^{n+8}}=

=(a2+3)nan+7b4(n+3)(a2(n+1)bn+1)3bn+8==\frac{{(a^{2+3})}^n\cdot a^{n+7}\cdot b^{4(n+3)}}{{{(a^{2(n+1)}\cdot b^{n+1}})}^3\cdot b^{n+8}}=

=(a5)nan+7b4n+12a3(2n+2)b3(n+1)bn+8==\frac{{(a^5)}^n\cdot a^{n+7}\cdot b^{4n+12}}{{a^{3(2n+2)}\cdot b^{3(n+1)}}\cdot b^{n+8}}=

=a5nan+7b4n+12a6n+6b3(n+1)+(n+8)==\frac{a^{5n}\cdot a^{n+7}\cdot b^{4n+12}}{a^{6n+6}\cdot b^{3(n+1)+(n+8)}}=

=a5n+(n+7)b4n+12a6n+6b3n+3+n+8==\frac{a^{5n+(n+7)}\cdot b^{4n+12}}{a^{6n+6}\cdot b^{3n+3+n+8}}=

=a6n+7b4n+12a6n+6b4n+11==\frac{a^{6n+7}\cdot b^{4n+12}}{a^{6n+6}\cdot b^{4n+11}}=

=a(6n+7)(6n+6)b(4n+12)(4n+11)==a^{(6n+7)-(6n+6)}\cdot b^{(4n+12)-(4n+11)}=

=a(6n+76n6b4n+124n11==a^{(6n+7-6n-6}\cdot b^{4n+12-4n-11}=

=ab=ab

Share with Friends

Leave a Reply