Powers and Roots – Simplify an expression with powers – Exercise 1653

Exercise

Simplify the expression:

2n+14n1+2n2n+32n1\frac{2^{-n+1}\cdot 4^{n-1}+2^n}{2^{n+3}-2^{n-1}}

Final Answer

2n+14n1+2n2n+32n1=15\frac{2^{-n+1}\cdot 4^{n-1}+2^n}{2^{n+3}-2^{n-1}}=\frac{1}{5}

Solution

Using Powers and Roots rules we get:

2n+14n1+2n2n+32n1=\frac{2^{-n+1}\cdot 4^{n-1}+2^n}{2^{n+3}-2^{n-1}}=

=2n+1(22)n1+2n2n232n21==\frac{2^{-n+1}\cdot {(2^2)}^{n-1}+2^n}{2^n\cdot 2^3-2^n\cdot 2^{-1}}=

=2n+122n2+2n2n232n21==\frac{2^{-n+1}\cdot 2^{2n-2}+2^n}{2^n\cdot 2^3-2^n\cdot 2^{-1}}=

=2n+1+2n2+2n2n(2321)==\frac{2^{-n+1+2n-2}+2^n}{2^n(2^3-2^{-1})}=

=2n21+2n2n(2321)==\frac{2^n\cdot 2^{-1}+2^n}{2^n(2^3-2^{-1})}=

=2n(21+1)2n(2321)==\frac{2^n(2^{-1}+1)}{2^n(2^3-2^{-1})}=

=21+12321==\frac{2^{-1}+1}{2^3-2^{-1}}=

=12+1812==\frac{\frac{1}{2}+1}{8-\frac{1}{2}}=

=32152==\frac{\frac{3}{2}}{\frac{15}{2}}=

=32215==\frac{3}{2}\cdot\frac{2}{15}=

=630=15=\frac{6}{30}=\frac{1}{5}

Share with Friends

Leave a Reply