Proving Derivative Existence – A function with parameters – Exercise 1123 Post category:Proving Derivative Existence Post comments:0 Comments Exercise Given the function (a and b parameters) f(x)={a⋅cosx,x≤0b⋅sin(x+cπ),x>0f(x) = \begin{cases} a\cdot \cos x, &\quad x\leq 0 \\ b\cdot \sin(x+c\pi), &\quad x >0\\ \end{cases}f(x)={a⋅cosx,b⋅sin(x+cπ),x≤0x>0 For which values of the function parameters is it differentiable? Final Answer Show final answer {a=0b=0c,c∈R\begin{cases} a=0 \\ b=0\\ c, &\quad c\in R \end{cases}⎩⎪⎪⎨⎪⎪⎧a=0b=0c,c∈R Or {a=±bc=12+n,n∈Z\begin{cases} a =\pm b \\ c=\frac{1}{2} +n, &\quad n\in Z\\ \end{cases}{a=±bc=21+n,n∈Z Solution Coming soon… Share with Friends Read more articles Previous PostProving Derivative Existence – A function with parameters – Exercise 1132 Next PostProving Derivative Existence – A multiplication with sin function – Exercise 1101 You Might Also Like Proving Derivative Existence – A multiplication with sin function – Exercise 1094 December 10, 2018 Proving Derivative Existence – A multiplication with sin function – Exercise 1101 December 10, 2018 Proving Derivative Existence – A function with parameters – Exercise 1132 December 13, 2018 Proving Derivative Existence – A function with a polynomial and a square root – Exercise 1140 December 13, 2018 Proving Derivative Existence – A polynomial function inside a square root – Exercise 1147 December 13, 2018 Proving Derivative Existence – A polynomial and an exponential functions – Exercise 1150 December 13, 2018 Leave a Reply Cancel replyCommentEnter your name or username to comment Enter your email address to comment Enter your website URL (optional) Δ
Proving Derivative Existence – A function with a polynomial and a square root – Exercise 1140 December 13, 2018
Proving Derivative Existence – A polynomial function inside a square root – Exercise 1147 December 13, 2018
Proving Derivative Existence – A polynomial and an exponential functions – Exercise 1150 December 13, 2018