Calculating Limit of Series – A quotient of polynomials and trigonometric functions – Exercise 716

Exercise

Find the limit

\lim _ { n \rightarrow \infty}\frac{2 n^4 \arccos {(\frac{1}{n})}+n^2\sin{(n)}}{7n^4+3n^2+5}

Final Answer


\lim _ { n \rightarrow \infty}\frac{2 n^4 \arccos {(\frac{1}{n})}+n^2\sin{(n)}}{7n^4+3n^2+5}=\frac{\pi}{7}

Solution

Coming soon…

Share with Friends

Leave a Reply