Exercise
Simplify the expression:
\frac{5}{\sqrt[3]{3}+\sqrt[3]{2}}
Final Answer
Solution
Using Powers and Roots rules we get:
\frac{5}{\sqrt[3]{3}+\sqrt[3]{2}}=
We get rid of the roots in the denominator:
=\frac{5(3^{\frac{2}{3}}-3^{\frac{1}{3}}\cdot 2^{\frac{1}{3}}+2^{\frac{2}{3}})}{(\sqrt[3]{3}+\sqrt[3]{2})(3^{\frac{2}{3}}-3^{\frac{1}{3}}\cdot 2^{\frac{1}{3}}+2^{\frac{2}{3}})}=
=\frac{5(3^{\frac{2}{3}}-3^{\frac{1}{3}}\cdot 2^{\frac{1}{3}}+2^{\frac{2}{3}})}{3+2}=
=3^{\frac{2}{3}}-3^{\frac{1}{3}}\cdot 2^{\frac{1}{3}}+2^{\frac{2}{3}}=
One can further simplify the result:
=\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}