Powers and Roots – Simplify an expression with roots – Exercise 5679

Exercise

Simplify the expression:

124+1\frac{1}{\sqrt[4]{2}+1}

Final Answer

(241)(2+1)(\sqrt[4]{2}-1)(\sqrt{2}+1)

Solution

124+1=\frac{1}{\sqrt[4]{2}+1}=

=1214+1==\frac{1}{2^{\frac{1}{4}}+1}=

=1(2)2+1==\frac{1}{{(\sqrt{2})}^2+1}=

=(2)21((2)2+1)((2)21)==\frac{{(\sqrt{2})}^2-1}{({(\sqrt{2})}^2+1)({(\sqrt{2})}^2-1)}=

=(2)2121==\frac{{(\sqrt{2})}^2-1}{\sqrt{2}-1}=

=((2)21)(2+1)(21)(2+1)==\frac{({(\sqrt{2})}^2-1)(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)}=

=((2)21)(2+1)21==\frac{({(\sqrt{2})}^2-1)(\sqrt{2}+1)}{2-1}=

=((2)21)(2+1)==({(\sqrt{2})}^2-1)(\sqrt{2}+1)=

=(241)(2+1)=(\sqrt[4]{2}-1)(\sqrt{2}+1)

Share with Friends

Leave a Reply