Polar Coordinates – Finding integration limits in polar coordinates – Exercise 4002

Exercise

Given the double integral

Df(x,y)dxdy\int\int_D f(x,y) dxdy

Calculate the integration limits in polar coordinates where D is the domain

{(x,y)x2aya,axa,a>0}\{(x,y)|\frac{x^2}{a}\leq y\leq a,-a\leq x\leq a, a>0\}

Final Answer

3π4πdθ0asinθcos2θf(rcosθ,rsinθ)rdr+\int_{\frac{3\pi}{4}}^{\pi}d\theta\int_0^{\frac{a\sin\theta}{\cos^2\theta}} f(r\cos\theta,r\sin\theta)\cdot r dr+

+π43π4dθ0asinθf(rcosθ,rsinθ)rdr++\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}}d\theta\int_0^{\frac{a}{\sin\theta}} f(r\cos\theta,r\sin\theta)\cdot r dr+

+0π4dθ0asinθcos2θf(rcosθ,rsinθ)rdr+\int_0^{\frac{\pi}{4}}d\theta\int_0^{\frac{a\sin\theta}{\cos^2\theta}} f(r\cos\theta,r\sin\theta)\cdot r dr

Solution

Coming soon…

Share with Friends

Leave a Reply