Exercise
Given the double integral
\int\int_D f(x,y) dxdy
Calculate the integration limits in polar coordinates where D is the domain
x^2+y^2\leq ax, a>0
Final Answer
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}d\theta\int_0^{a\cos\theta} f(r\cos\theta,r\sin\theta)\cdot r dr
או
\int_0^{2\pi}d\theta\int_0^{\frac{a}{2}} f(\frac{a}{2}+r\cos\theta,r\sin\theta)\cdot r dr
Solution
Coming soon…