Vector uses in physics – Calculate velocity and acceleration – Exercise 3862

Exercise

A point moves along the curve

r(t)=2costi+3sintj+4tk\vec{r}(t)=2\cos t\vec{i}+3\sin t\vec{j}+4t\vec{k}

Calculate the velocity and acceleration of the point in time

t=π2t=\frac{\pi}{2}

Final Answer

v(t)=2sinti+3costj+4k\vec{v}(t)=-2\sin t\vec{i}+3\cos t\vec{j}+4\vec{k}

v(π2)=2i+4k\vec{v}(\frac{\pi}{2})=-2\vec{i}+4\vec{k}

a(t)=2costi3sintj+0k\vec{a}(t)=-2\cos t\vec{i}-3\sin t\vec{j}+0\vec{k}

a(π2)=3j\vec{a}(\frac{\pi}{2})=-3\vec{j}

Solution

Coming soon…

Share with Friends

Leave a Reply