Line Integrals – A vector function with a parameter t – Exercise 3513

Exercise

Calculate the integral

\int_c (x^2+y^2+z^2) dl

Where c is

r(t)=2\cos t i+2\sin t j +t k

And the range of t is

0\leq t\leq 2\pi

Final Answer


\int_c (x^2+y^2+z^2) dl=\sqrt{5}(8\pi+\frac{8}{3}{\pi}^3)

Solution

Coming soon…

Share with Friends

Leave a Reply